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For grid Reynolds numbers from 12800 to 81 OOO, the Frenkiel-Klebanoff-Huang 
data for approximately isotropic homogeneous grid-generated turbulence shows that 
the longitudinal correlation function is given by the simple empirical expression 
f = [1 + ( T / ~ L ) ] - ~ ,  where r (9 0.01M) is the separation distance between two points 
in the fluid flow and L = L(t) is the integral scale. It follows that the longitudinal 
velocity correlation (u,(x+re, t )  u,(x, t ) )  = u y  with e = (1,0,0) is invariant under 
the separation-distance time-contraction transformations T+ [T+ (1 - A )  2L], t +Ah 
for all positive parameter values A < 1. Conversely, if the longitudinal correlation 
function is prescribed to have the form f = F ( r / L ( t ) ) ,  then the indicated transform- 
ation invariance holds if and only if F([) = (1 It is also shown that a Gaussian 
normal probability distribution at t = 0 and the KBrmAn-Howarth equation for all 
t > 0 are compatible with the transformation invariance and associated expression 
for f. 

1. Introduction 
It has recently been demonstrated that statistical-dynamical self-similarity must 

be featured in the free decay of grid-generated turbulence at high Reynolds numbers, 
with the experimentally established decay law u2 GC t-! and integral scale dependence 
L a tg following deductively and without any additive assumption from a Gaussian 
normal probability distribution over velocity fields at the initial instant t = 0 (Rosen 
1985 ; Saffman 1967). From the prescribed initial expectation values 

( U & u ) )  = 0, (1) 

a 2  

aTr ar, (u,(x + r, 0 )  u,(x, 0 ) )  = c2 (a, - v- 2 -) 8 3 ’ (  r )  

involving the single constant parameter c2 with the physical units of (length)5/(time)2, 
it follows that u2 = (numerical constant) Cdltd and L = (numerical constant) &. 
Empirically one has (e.g. Sreenivasan et al. 1980) 

uZ = 0.04 U t M W ,  (3) 

L = 0.13 Ubl%. (4) 

relations consistent with c2 = (numerical constant) VW. 
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r l M  0 0.10 0.20 0.30 0.40 0.60 
f[= R(rIU)I 1 0.80 0.65 0.52 0.45 0.32 
m y  (711 I 0.800 0.651 0.536 0.447 0.320 

r lM 1 1.60 2 2.40 2.80 3.20 
f = R(r /  Ul 0.19 0.09 0.06 0.04 0.03 0.02-0.03 

(711 0.180 0.090 0.061 0.043 0.032 0.024 

TABLE 1 .  Comparison of experimental values for the longitudinal correlation function [figure 2 of 
Frenkiel et al. (1979) with the Taylor approximationf = R ( r / U ) ]  and values given by the empirical 
formula (7). Since the measurements were made at wind and water tunnels for which L = 0.65M. 
the integral scale L in (7) is eliminated in favour of the mesh length M 

Approximately isotropic homogeneous grid-generated turbulence features 
(ut(x,  t ) )  = 0 for all t >, 0 and a two-point velocity correlation tensor of the form 

(u , (x+r , t )u j (x , t ) )  = u2 f+-r-  at j - - r . r . - -  , [( 3 2r 2 j a r  afl 
where u2 = u2(t) = i( lu(x, t)12)>, r = Irl and f = f ( r ,  t )  is the longitudinal correlation 
function subject to the normalization condition f(0, t )  = 1.  By setting r = re with 
e = ( l , O , O ) ,  one obtains the longitudinal velocity correlation from (5) as 

(u, (x+re, t )uI (x, t ) )  = u”f. (6) 
As shown by the analysis presented below, the longitudinal velocity correlation (6) 
appears to manifest a transformation invariance symmetry in grid-generated 
turbulence at  high Reynolds numbers. It is also shown in the following that a 
Gaussian normal probability distribution at t = 0 and the Karman-Howarth equa- 
tion for all t > 0 are compatible with the specific expression for f required by the 
transformation invariance of (6). 

2. Empirical expression for the longitudinal correlation function and 
associated invariance of the longitudinal velocity correlation 

For grid-generated turbulence at Reynolds numbers U M / v  from 12800 to 81000 
and decay times such that L = 0.65M, the data reported by Frenkiel, Klebanoff & 
Huang (1979) are subsumed by the simple empirical expression 

f=[ l+&]’  (7) 

as shown by the comparison in table 1. Observe that formula (7)  features the integral 
scale in a manner required by the general definition: L = L(t) = j r f ( r ,  t )  dr. It is also 
noteworthy that (7) is consistent with the asymptotic dependence for large r ,  
limr+m r”fr, t )  = (function oft), first predicted by Birkhoff (1954). 

Consider the separation-distance time-contraction transformations 
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in which A is a disposable semigroup parameter in the range 0 < A < 1 and the 
integral scale L = L(t) is given by (4). It is easy to demonstrate that the set of 
transformations (8), (9) for all positive A < 1 constitutes a closed semigroup as a 
consequence of the relation L(t’) = AL(t); 

A A’ AA‘ 
r+ r’ + r” r+r” ,  

A A‘ I * AA’ t +t’ +t” t + t“. 

Under a transformation prescribed by (8), (9), the induced mapping of the quantities 
(3) and (7) is given by 

(11)  (u2)’ = UZ(t’) = A-3uZ(t), 

where L(t’) = hL(t) is employed to obtain the final member of (12). Hence, the 
longitudinal velocity correlation (6) is invariant under (8), (9) : 

(u”f’ = uy (13) 
or equivalently 

(14) 

Conversely, if the longitudinal correlation function is prescribed to have the form 
f =  S ( r / L ( t ) )  subject to the normalization condition F (0 )  = 1,  then the scaling 
property (12) (implied by (13) and (11)) requires 

(u,(x+ r’e, t’) u,(x, t ’ ) )  = (u,(x+ re, t )  u,(x, t ) ) .  

for all positive A < 1,  (15) 

and (15) implies the empirical expression (7), i.e. S(E) = (l+$!J-3. Therefore the 
longitudinal velocity correlation invariance property (14) is essentially equivalent to 
the validity of expression (7) for the longitudinal correlation function with u2 and 
L given by (3) and (4). 

3. Dynamical consistency 
As t + O  the two-point velocity correlation tensor (5 )  must tend to the initial 

expectation value (2). Since the right-hand sides of (5 )  and (2) are manifestly 
symmetric solenoidal tensors with respect to r, the t+  0 correspondence obtains if and 
only if the trace of (5)  with (7), 

( ~ ( ~ + r , t ) * u ( x , t ) )  = uz 3f+r -  - 3ua 1+- , ( 9- [ 2’Lr 
converges to the trace of (2), 

(u(x+r ,  o)-u(x ,  0)) = 2c2~(3) (r ) .  

It is easily verified that such a t + O  representation of the three-dimensional 
&-function is indeed valid, 

t 4  
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where u2 and L are given by (3) and (4). The t + O  limit relation (18) fixes c2 in terms 
of U and M as 

c2 = 4.4 x 1 0 - 3 ~ ~ 3 ,  (19) 

and thus (3) and (4) are expressible directly in terms of c as u2 = 0.35dt-f and 
L = (2.6)-'~%. 

To check the dynamical consistency of (7) fort > 0, consider the KBrmBn-Howarth 
equation (e.g. see Batchelor 1953) 

with the inertial-transfer term K = K(r ,  t )  defined by 

K = 2r-2([r*u(x,t)] [u(x, t ) .u(x+r,  t ) ] ) .  (21) 

K = - 2 r - 2 ( [ r * u ( ~ + r , t ) ] [ u ( ~ + r , t ) * u ( ~ , t ) ] ) ,  (22) 

(23) 

(24) 
for r = re with e = (1, 0,O). In view of the expectation-value equation (16) and the 
structure of the final member of (24), the probability average in (23) must yield a 
K of the form 

By making the successive replacements r+-r  and x +  ( x + r )  in (21), one gets 

and the sum of (21) and (22) produces 

where 
K = ( E P ,  t ; x )  "x+ r,  t) .u(x,  t ) D ,  

& , t ; x )  = r-zr*[u(x, t ) -u(x+r, t ) ]  = r-'[u,(x, t ) -uu,(x+re, t ) ]  

K = - auL-13u2 1 + - IrLT (25) 

in which the dimensionless factor a may possibly depend on r and t .  

differentiations on (3), (4) and (7) : 
The terms in f on the left-hand side of (20) are evaluated by carrying out the 

[ IrLT 
a 
- ( U Y )  = -$-1u2 1 + -  , 
at 

ay 4af [ 2?Ll-5 
-2vu2 -+-- = 12~u~L-lr-l 1+-  . 

(ar2 r a,) 
From the ratio of the right-hand sides of (26) and (27) it follows that the viscosity- 
effect term (27) is small in magnitude compared with the time-derivative term (26) 
for r lOvt 

where R,  = UM/v is the grid Reynolds number. Since the viscosity-effect term (27) 
can be dropped in (20) for values of r that satisfy (28), one obtains the inertia-effect 
dominant equation 

(29) 
a ~ ( u Y ,  = K. 

As a consequence of (25) and (26), (29) is indeed satisfied for all r admitted by (28) 
and all t > 0 if the proportionality factor in (25) is a numerical constant, viz. 
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where (3) and (4) are employed to evaluate the middle member of (30). Hence the 
form for f in (7) is compatible with the KBrmBn-Howarth equation (20) for values 
of r satisfying the magnitude condition (28). It is interesting to note that a shown 
in (30) is expressible as a = u-'(dL/dt), and therefore the average value of (24) in 
(23) is simply -auL-' = -L-'(dL/dt). 

4. Concluding summary 
Changing the distance between the two spatial points in the longitudinal velocity 

correlation in the indicated inhomogeneous fashion that brings in the integral scale 
additively, the separation-distance transformation (8) compensates the time- 
contraction transformation (9) in the precise manner required for the invariance of 
the longitudinal velocity correlation expressed by (14). Concomitantly, f = F ( r / L )  
takes the form (7) if ua and L are given by (3) and (4). This separation-distance 
time-contraction invariance symmetry in grid-generated turbulence at high Reynolds 
numbers is rooted in the inertia-effect dominant transfer of energy on the scale 
specified by the magnitude condition (28). A Gaussian normal probability distribution 
at t = 0 and the KBrmdn-Howarth equation for all t > 0 are compatible with the 
transformation invariance (14) and associated expression for f shown in (7). 

REFERENCES 

BATCHELOR, G. K. 1953 The Theory of Honcogeneowr Turbdeme. Cambridge University Press. 
BIRKHOFF, G. 1954 Fourier synthesis of homogeneous turbulence. Commun. Pure Appl. M a t h  7 ,  

FRENKIEL, F. N., KLEBANOFF, P. S. & HUANQ, T. T. 1979 Grid turbulence in air and water. Phys. 

ROSEN, G. 1985 Theoretical basis for aelf-similarity in the decay of incompressible fluid turbulence. 

SAFFMAN, P. G. 1967 Note on decay of homogeneous turbulence. Phys. Fluids 10, 1349. 
SREENIVASAN, K. R., TAVOULARIS, S., HENRY, R. & COWIN, S. 1980 Temperature fluctuations 

19. 

nuids 22,1606. 

Phys. Rev. A 32, 2549. 

and scales in grid-generated turbulence. J .  Fluid Nech. 100, 597. 

4 


